Transmetalation of Boron reagents

Boran Lee Topical Seminar 02/15/2022

General mechanism of Pd-catalyzed cross-coupling

Less is known about TM step

Transmetalation in Suzuki-Miyaura coupling?

Minireview on SMC: Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem. Int. Ed. 2013, 52, 7362

Transmetalation pathways in SMC

Transmetalation pathways in SMC

■ Path A: "Boronate" pathway

Transmetalation pathways in SMC

Minireview on SMC: Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem. Int. Ed. 2013, 52, 7362

Role of alkoxide bases

Miyaura and Suzuki (1979)

- Poor transmetalation w/o alkoxide bases
- Upon addition of NaOEt, 80% cross-coupling product obtained, high stereospecificity
- Base was proposed to react with a 3-coordinate boron center to give a more nucleophilic boronate ("Boronate" pathway proposed)

Miyaura, N.; Yamada, K.; Suzuki, A. *Tetrahedron Lett.* **1979**, *20*, 3437. Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. *J. Am. Chem. Soc.* **1985**, *107*, 972.

Role of alkoxide bases

Miyaura and Suzuki (1979)

- Poor transmetalation w/o alkoxide bases
- Upon addition of NaOEt, 80% cross-coupling product obtained, high stereospecificity
- Base was proposed to react with a 3-coordinate boron center to give a more nucleophilic boronate ("Boronate" pathway proposed)

Miyaura and Suzuki (1985)

activation of Pd center prior to TM ("Oxo-palladium" pathway proposed)

Miyaura, N.; Yamada, K.; Suzuki, A. *Tetrahedron Lett.* **1979**, *20*, 3437. Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. *J. Am. Chem. Soc.* **1985**, *107*, 972.

- Stereochemistry: complete retention (w.r.t. carbon)
- Pre-transmetalation intermediate containing a Pd–O–B linkage was proposed.

Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.

- Stereochemistry: complete retention (w.r.t. carbon)
- Pre-transmetalation intermediate containing a Pd–O–B linkage was proposed.

(less Lewis-acidic borinic ester)

Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.

- Stereochemistry: complete retention (w.r.t. carbon)
- Pre-transmetalation intermediate containing a Pd–O–B linkage was proposed.

Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.

fast

rate = k [PhBr]¹[borane]⁰[NaOH]⁰ TOL step: oxidative addition of PhBr boronate pathway

slow

rate = k [PhBr]⁰[borinate]⁰[NaOH]¹ TOL step: hydrolysis of (PPh₃)₂Pd(Br)(Ph) oxo-palladium pathway

fast

rate = k [PhBr]¹[borane]⁰[NaOH]⁰ TOL step: oxidative addition of PhBr boronate pathway

slow

rate = k [PhBr]⁰[borinate]⁰[NaOH]¹ TOL step: hydrolysis of (PPh₃)₂Pd(Br)(Ph) oxo-palladium pathway

R

R

fast

rate = k [PhBr]¹[borane]⁰[NaOH]⁰ TOL step: oxidative addition of PhBr boronate pathway

slow

rate = k [PhBr]⁰[borinate]⁰[NaOH]¹ TOL step: hydrolysis of (PPh₃)₂Pd(Br)(Ph) oxo-palladium pathway

Possible role of bases:

- Formation of **12** (more nucleophilic)
- Complexation of R₂B(OH) byproducts
- Hydrolysis of (Ph)Pd(Br)(PPh₃)₂
- Accelerated coupling rates for 11
- Catalyst regeneration

R delivered through a 4-membered TS (retention of configuration)

Stoichiometric reactions Hartwig (2011)

Stoichiometric reactions Hartwig (2011)

Stoichiometric reactions Hartwig (2011)

Stoichiometric reactions Hartwig (2011)

Amatore and Jutand (2011)

Amatore and Jutand (2011)

Observation of elusive reaction intermediate

By ESI-Ms

Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, 6985.

Observation of elusive reaction intermediate

By ESI-Ms

Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, 6985.

By ³¹P NMR spectroscopy

Sicre, C.; Braga, A. A. C.; Maseras, F.; Cid, M. M. Tetrahedron 2008, 64, 7437.

Denmark (2016)

Denmark (2016)

Denmark (2016)

Independent synthesis of 3

Independent synthesis of 3

Reaction not observed due to steric hindrance resulting from two iPr_3P ligands on **3**?

Preparation of tetracoordinate boron reaction intermediate:

No change with an excess of $Ar^2B(OH)_2$ Cross peak between **5** and $Ar^2B(OH)_2$ in EXSY even at 100 °C

Preparation of tetracoordinate boron reaction intermediate:

Thomas, A. A.; Denmark, S. E. Science, 2016, 352, 329.

Preparation of tetracoordinate boron reaction intermediate:

Transfer of Ar from 4-coordinate B to P

Transfer of Ar from 4-coordinate B to P

Thomas, A. A.; Denmark, S. E. Science, 2016, 352, 329.

Transfer of Ar from 4-coordinate B to P

Similarity of rate constants observed in THF and THF-MeOH mixture supports that **5** is converted to **4** before transmetalation.

Transfer of Ar from 3-coordinate B to P

Thermally stable at $-30 \,^{\circ}\text{C}$ in the presence of excess PiPr₃.

Transfer of Ar from 3-coordinate B to P

Transfer of Ar from 3-coordinate B to P

Plot of log[v_{max}] vs. log[PⁱPr₃]

Thomas, A. A.; Denmark, S. E. *Science*, **2016**, *352*, 329.

Transfer of Ar from 3-coordinate B to P

Thomas, A. A.; Denmark, S. E. Science, 2016, 352, 329.

Pre-transmetalation complexes observed so far

■ contain a Pd–O–B linkage & are able to transfer Ar groups from B to Pd.

Empty coordination site on Pd is needed for the TM to take place. (phosphine dissociation)

Phosphine ligands:

Phosphine ligands:

Smallest k with dppf: Ligand dissociation prior to TM (coordinatively unsaturated Pd center)
Faster rate with PPh₃: More electrophilic Pd center —> faster TM

Thomas, A. A.; Wang, H.; Zahrt, A. F.; Denmark, S. E. J. Am. Chem. Soc. 2017, 139, 3805

substrate	complex	a^{a} form k, 10^{-3}	s ⁻¹ k _{rel}	substrate	complex	^{<i>a</i>} form k, 10^{-3}	s^{-1} k_{rel}
F B(OH) ₂	4	0.578 ± 0.013	1.00	BO	18	_	_
O-B-O	9	2.46 ± 0.39	4.27	⊧ ↓ 16		(prdt formatior	n: 5.5 h)
				F 22	23	(prdt formation: 0.3 h)	
	11	$\begin{array}{r} 0.0013 \ \pm \\ 0.0004 \end{array}$	0.0022	F B-O-iPr 20	21	0.824 ± 0.016	1.42
	14	2.73 ± 0.54	4.20	F 17	19	13.3 ± 0.7	23.01
F 12				F B(OCH ₃) ₂	6	12.4 ± 0.2	21.45
B-O OME	15	3.34 ± 0.21	5.78	F B 0 3 28	30	5.39 ± 0.07	9.33
F F 13 ■ Faster ra	3: More electrop		31	0.226 ± 0.031	0.39		

Thomas, A. A.; Zahrt, A. F.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 4401

- Ease of rehybridization of B: steric accessibility, electrophilicity, angular distortion
- Ease of formation of a coordinatively unsaturated Pd complex: Lewis basicity and steric demand of the oxygen atoms

Migratory aptitude of the Ar group:

Lewis basicity of O (inverse dependence compared to the factor above)

Thomas, A. A.; Zahrt, A. F.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 4401

Thomas, A. A.; Zahrt, A. F.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 4401

Other metal complexes containing M–O–B bonds

J. Am. Chem. Soc. 2007, 129, 1876.

Proposed mechanism for Ni-catalyzed SMC

OA: either in a concerted fashion or by a single-electron transfer pathway via free radicals
RE: less information is available due to the difficulty of isolating TM product.
TOL: either OA (poorly reactive substrates such as ArCI) or TM (for other electrophiles)

Ni-catalyzed SMC: Ni(I/III) cycle

Reaction of Ni(0) cat and electrophile

Ni(IMes)₂ $\xrightarrow{\text{PhX}}$ Ni(IMes)₂X + Ph • X = I, Br, Cl

Never detected OA product

--> general mechanism may not be applicable to Ni-based cross-coupling

Ar-X

Zhang, K.; Conda-Sheridan, M.; Cooke, S. R.; Louie, J. Organometallics 2011, 30, 2546.

Ni-catalyzed SMC: Ni(0/II) cycle

Formation of Ni(I) is deterimental to catalysis

■ Ni(0/II) cycle was proposed.

Beromi, M. M.; Nova, A.; Balcells, D.; Brasacchio, A. M.; Brudvig, G. W.; Guard, L. M.; Hazari, N.; Vinyard, D. J. *J. Am. Chem. Soc.* **2017**, *139*, 922

Christian, A. H.; Müller, P.; Monfette, S. Organometallics 2014, 33, 2134

Figure 3. Yield of 5 over time. Conditions: 17 mM [Ni], 1.5 equiv of 4 (solid line) or 6 and 18-crown-6 (dashed line), THF, 22 °C, N_2 atmosphere. Values are $\pm 3\%$ in replicate runs.

bridged hydroxo dinickel complex: reacts with PhB(OH)₂ faster than NiCl complex with PhB(OH)₂

TM does not proceed in the absence of hydroxide

Christian, A. H.; Müller, P.; Monfette, S. Organometallics 2014, 33, 2134

Hydrolysis of NiBr compound:

Hydrolysis of NiBr compound:

Payard, P.-A.; Perego, L. A.; Ciofini, I.; Grimaud, L. ACS Catal. 2018, 8, 4812

Hydrolysis of NiBr compound:

Payard, P.-A.; Perego, L. A.; Ciofini, I.; Grimaud, L. ACS Catal. 2018, 8, 4812

Hydrolysis of NiBr compound:

Scheme 5. Reaction of Complex 1 with $PhB(OH)_2$ in the Presence of TBAOH to form the Biphenyl Product 12

■ at low [TBAOH]/[PhB(OH)₂], fast reaction

[3-4] should kept low. Plot indicates dimeric 3 and 4 are not directly involved in TM.

Control of [OH⁻] is very important!!

poorly soluble inorganic bases (carbonate, phosphate) in low-polarity solvent

- amount of water added
- portionwise addition of bases in case reaction is slow.

Payard, P.-A.; Perego, L. A.; Ciofini, I.; Grimaud, L. ACS Catal. 2018, 8, 4812

Hammett plot at high and low [OH⁻]

٠R

Christian, A. H.; Müller, P.; Monfette, S. Organometallics 2014, 33, 2134

Hammett plot at high and low [OH⁻]

a) TBAOH / ArB(OH)₂ = 4 : 10 (equiv / equiv)

Christian, A. H.; Müller, P.; Monfette, S. Organometallics 2014, 33, 2134

Hammett plot at high and low [OH⁻]

Christian, A. H.; Müller, P.; Monfette, S. Organometallics 2014, 33, 2134

Boron reagents

Nucleophilicity

In SMC, boron reagent tends to be nucleophilic component.

Mayr's nucleophilicity scale:

benzhydrylium ion

G. Berionni, B. Maji, P. Knochel and H. Mayr, *Chem. Sci.*, **2012**, *3*, 878

Boron reagents

Nucleophilicity

In SMC, boron reagent tends to be nucleophilic component.

Mayr's nucleophilicity scale:

G. Berionni , B. Maji , P. Knochel and H. Mayr, *Chem. Sci.*, **2012**, *3*, 878

Stability

The extent of transesterification is used to assess the stability of boronic esters of interest.

Fig. 4 Stability sequences for a range of boronic esters, with percent transesterification from the glycol boronic ester indicated.

- trans diols: completely unreactive
- 6-membered esters: more thermodynamically stable (favorable orbital overlap btw B and O)
- Methyl group substitution: further stabilization
- Catechol: the decreased pi-donating ability of O to B

Lennox, A. J. J.; Lloyd-Jones, G. C. *Chem. Soc. Rev.*, **2014**, *43*, 412.

Use of boronic esters in transmetalation

Direct transmetalation

Boranes, Boronic acids

Pre-activatiopn necessary

Organotrifluoroborate salt, MIDA boronate, BDan

Still ambiguous

Boronic esters; BPin, BNeo, BCat, ... Trihydroxyborate ion

Scheme 8.24 Possible transmetallation mechanisms for the coupling of an arylpinacolboronic ester.

Lennox, A. J. J.; Lloyd-Jones, G. C. Boron Reagent Activation in Suzuki-Miyaura Coupling, Chapter 8 in "Modern Cross Coupling: Evolution and Application" Edited by Thomas Colacot, RSC, 2014